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Abstract. We consider an Ising system in two dimensions with anisotropic ferromag-
netic interactions in the strong anisotropic limit and study, via numerical simulation,
the dynamics of the interface separating two domains. Since the system is highly
anisotropic (J; » Jy with Jx 3 kgT') and we neglect the overhang configurations,
the model in some aspects is an 505 (solid on solid} model. In this case the domain
wall moves in one direction (z) and we are in the so-called ‘strip geomeiry' (L x o0},
L being the size of the system in the y direction. The dynamics of this interface can
be reduced, as has been already shown, to the correlated motion of random walkers.
Our previous study at high temperature (J; < kpT) has shown that for the equilib-
rium case where the mean position of the centre of mass (CM) does not change, the
exponents ¢ and o of the scaling relation describing the dynamics of the width of the

wall have values 2 and 0.5, respectively, An eguality z « 2o = 1 was also ohtained
wajl Rave valugs o ana L.o, respectively, An eguality z A%¢ = 1 Wa5 QiS¢ oDLaInCa

from cross-over arguments. In this paper we extend our study, by including a uniform
external magnetic field, to the non-equilibrium case where CM mean position of the
interface moves with time. We consider both the high- and low-temperature cases
(Jy/kgT = 0.1 and 1), and obtain the equality z — 2a = —exgp; oM being the
exponent characterizing the size dependence of the diffusion coefficient of the cM,
ie. D ~ L%cM in the long-time regime. For equilibrium we get agy ~ —1. For
the low-temperature, field-driven case we find the exponent approaching the value
—0.5 as the magnetic field increases from 0 to HfJy = 2. Since the static exponent
o obtained is always near 0.5, our results in the low-temperature case correspond to
z = 2 for equilibrium and approach the value z = % predicted by Kardar, Parisi and
Zhang in the non-equilibrium situation. The values of the exponent z obtained in dif-
ferent cases (equilibrium and non-equilibrium) by calculating the ¢M exponent ooy
are the same as those obtained from known equalities: z + o = 2 (non-equilibrium)
and z — 20 = d — 1 {equilibrium)., Therefore we propose that the single equality
z — 200 = —exgyM Mmay apply far more generally and the study of ¢M dynamics may
therefore provide an alternative {or complementary) way of analysing the results of
domain growth simulations. We also note that our results are in agreement with
two-dimensional results on the restricted solid on solid model {Rs0s).

1. Introduction

Many studies have been reported of the simulation of dynamics of an interface that
moves just in one direction. Various models have been considered: the single-step
model [1, 2], ballistic deposition models [3-6], random deposition with surface diffusion

(2, 7], Eden models [8-13], and the restricted SO$ model [14], both in two and higher
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dimensions. For ‘strip geometry’ (L x oc), considered here, the interface is defined by
the variables &, (i = 1,... L}. The interface width, £, is given by

L
_ <1/L (b - hCM)2> (1)

with by = 1/L Zf:i h;, the position of the centre of mass. This guantity, £, obeys
a finite-size scaling relation [3]:
E(L,t} = Lof (t/L%). (2)

The interface width saturates for large times (¢ 3» L) at a size-dependent value,
€(L,00) ~ L (3)
and is L independent for small times (t < L*):
E(L,t < L) ~ 1o/, (4)

To this behaviour corresponds a scaling function that reaches a constant value for
large & and behaves like 2°/% for small z. Edwards and Wilkinson [15] derived a
Langevin equation for the variables h;, and following that Kardar et al [16} analysed
the general non-equilibrium case and predicted that the inclusion of the drift velocity
for the interface mean position introduces a nonlinear terrm in that equation. In the
absence of the nonlinear term, z = 2 and o = (.5 was obtained for two dimensions.
When the nonlinear term is added a value of z equal io % is obtained, but the value
of a is the same. Furthermore, the exponent equality, z + & = 2, emerged from the
renormalization group treatment. This behaviour was found to be consistent with
simulation results, except for random deposition with surface diffusion where, despite
the non-equilibrium character of the model, : = 2 was observed [2, 7).

In our previous simulation study [17] of the 2D anisotopic Ising model for tempera-

PR v 7 /L T — +hot tlan e

L,uu:: LUL[UDPUIIUIIIS DU o IK-B.I —_— U 1, we lld'.l lUUllU l:ll(ll.i lll. cqul.uuuu1u bllC UA’.IJUI[ClllJD
z and o take the values 2 and 0.5, respectively. We include here the magnetic field
i our model thereby creating a non-equilibrium situation which makes the interface
mean position increase with time in the r direction. We consider various values of the
magnetic field and temperatures. Henceforth, we express both Jy and H In energy
units; thus Jy/kBT and H/kgT' are dimensionless. In the next section we define the
model and the various quantities used and discuss in some detail the CM movement and
its relation with other quantities. The details of the simulation experiment are given
in the section of results and discussion. Qur conclusions, which include discussion on
the limitations of our study and possible future work, are in the last section.

2. The model
The model considered is a two-dimensional anisotropic Ising model where the
anisotropy is strong, J, 3 J,, and the coupling constant J, obeys J, > kyT. The
initial configuration of the mterface separating two domains is a stralght line extend-
ing along the y direction and positioned at r = 0. This interface moves just in the z
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direction and one can describe it at any time-step by the variables h;. We use periodic
boundary conditions such that h; = h;, ;. Starting from the spin-flip transition rates
for spins on the two sides of the interface we construct the probability that in a single
time-step the variable h; increases or decreases by one unit, or retains its value [17].
These probabilities depend on the local configuration of the interface, namely on the
values of h;_, and h; ;. Only three parameters a,, a,, a; are needed to write these
transition probabilities for all the nine possible local configurations:

a, = {1 +exp[4J, /kgT(1 - 1’1’/i21y)]}'1

ay = {1+exp[4J, /kyT(1 + H/?J’y)]}‘1

ay = [1+exp(—=2H/kgTH1™ .
In figure 1 we indicate, in a concise form, the transition probabilities p,_ (h; — f;+1),
po (hy = k) and p_ (h; — R, — 1) for all possible configurations around A;. In the
figure, the full black circle represents the position of the walker h; along the z direction
while circles with — and + signs represent walkers h;_, and h,,, respectively. The
probabilities underneath a configuration are given in the following order: p_, py, p...

At every time-step a variable b, is randomly chosen to move and is changed according
to these probability rules.

O © © ©
® ® o o
© ® ® ©
(2,.0,1-ay) oy 1-gy-a, ,0;) (a,.0,1-a,) ta,.1-0,-0,,8,) {1-0,,0,a,)
© © ©

o o o

© ® © ®

{a,.0,1-a)  (a,.04-8,,1-05) {a,.05-0,.1-4;) la,1-a;-0,,a,)

C) 10

O

Figure 1. Various possible local configurations of the walker h; and the associated
stepping probabilities. The relative positions of walkers h;; and h;41 are indicated
by O and &, respectively, and the probabilities are given as (p4, po, p~). See the
text for details,

Besides the interface width already defined, we introduce two other quantities, the
variance of the position &, of a single segment of interface, V}, and the variance of the
centre of mass Vgy. These two quantities are related to the interface width by [17]

EX(L, 1) = Vi(t) = Vou (1), (5)

The variable h; is seen to perform a random walk where non-trivial correlations
with neigbouring walkers h;_, and h, , arise because of the non-zero exchange con-
stant J, along the direction parallel to the interface. Since this walk has no memory,
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Le. the transition probabilities at any time-step do not depend on the configuration
at previous times, it is expected that the Gaussian limit of the random walk must be
achieved for large times [18]. The variances V; and V,, have, therefore, a diffusive
behaviour for large times and grow linearly with time, with a diffusion coefficient that
is L dependent. Moreover, the magnetic field H causes the CM position to move in
the increasing z direction.

Since the interface width aproach a constant value for large times the large-time
diffusion constants of V| and Vo must be equal. We designate this common diffusion
constant as [ and write its size dependence as D ~ L¥cM_ At the other end, for small
times and sufficiently large systems, V| is L independent. Moreover, for this small-
time regime €2 and V] are approximately equal, since Vo, is small in this regime. So
we can write a finite-size scaling expression for V{(L,1):

Vi(L,t) =2l f(a/L7). (6)

For small times f{z) is constant and for large times it should behave as z!—2e/?
in order to obtain the time-linear behaviour in the asymptotic regime. The diffusion
coeflicient D, for large times, behaves, therefore, like 1/L*~** and we obtain

In d dimensions, in the cases where the CM behaves as a simple random walker,
the exponent oy is equal to —(d — 1) and equation (7) reduces to

z—2a=d-1 {3)

predicting for two dimensions (d = 2) o = 0.5 and z = 2, characteristic of equilibrium
situations. The last exponent relation was also found to be relevant for a random de-
position model in which particles diffuse to nearby sites where the binding is strongest
[19]. In the next section we describe the results of our simulation for the exponents
agy and a.

3. Results and discussion

Our Monte Carlo simulations were done for system sizes L = 8, 16, 32, 64, and 128 and
times up to 25000 MCs/L (MCS/L Monte Carlo steps per walker). For each system
size 500 runs were made, Simulations were done for two temperatures corresponding
to (a) J,/kgT = 1, and (b) J,/kgT = 0.1. In the low-temperature case, case (a),
the external magnetic field values chosen were H/J, = 0, 0.4 and 2 and in case (b)
the values were 0.4, 2 and 4. The exponent a was obtained using equation (3) by
fitting Iné(L, co) against In L to a straight line. We obtain the diffusion coefficient,
D, by fitting a straight line to the curves Vgy against ¢ in the long-time regime. A
subsquent straight-line fit of In D against In L yields the exponent acy. The errors
quoted {table 1) in the exponents correspond to fitting probabilities equal to or larger

than 0.9. We discuss low- and high-temperature results separately.
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Table 1. Results of the straight-line fits of lné(L, oo} agamst In L and In D against
InL, giving o and acpy, respectively.

HfJy JylksT o aCM

0 1 054+004 ~1.0%0.1
0.4 1 0.50 £ 0.03 -0.71 £0.07
2 1 0.50+ 001 —0.49+0.05
G.d 0.1 0.51£0.03 -0.99+0.07
2 0.1 0.55+£004 -0.98%0.07
4 0.1 0.50 £ 0.05 —

3t /

ln &

Hidy  Jy/kgT)

e 0 i
/ + 2 1
x 2 ¢.1
_‘l o N !
z 3 4 S
In £

Figure 2. Plot of In£(L, co) against In L and the corresponding straight-line fits for
Jy/kpT =1 and H/J, = 0,2 and for Jy/kpT = 0.1 and H/fJy = 2.

3.1. Low-temperature resulls

For all magnetic fields the ¢ values obtained are shown in table 1. For the case H =0
data for . = 8 were not included in the fit. The exponent values obtained are close to
0.5 as expected. For H/J, = 0 and 2 we show £ against L in a log-log plot in figure
2.

The fits of Vg against t for H/J, = 0,0.4 include data only for times greater than
1000 Mcs/ L. For this time interval all the systems reached the asymptotic regime, as
seen from the £(L,t) behaviour. For H/J, = 2, times greater than 5000 MCS/L are
needed. The results of the straight-line fit of In I} against In L are in table 1, and the

Ammnao e atn o
corresponding data are plotted in figure 3. In the zero-field case we get an exponent

acy near —1 and therefore r = 2, a behaviour expected [or equilibrium. For higher
magnetic fields this exponent approaches acy = ~0.5, corresponding to z = 1.5.
A further insight into this data analysis can be obtained by plotting Vg x L™%M
against ¢ for all system sizes. In figures 4 and 5 we plot these curves for the extreme
cases H/J, = 0 and 2. In the first case a good collapse of data can be seen at all
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X

Figure 3. Plot of ln D against InL for the cases Jy/kpT = 1 and H/J, = 0,0.4
and 2.

times; for H/J, = 2 collapse is obtained in the asymptotic regime. For smaller times
Vim scales actually like 1/L.

A L S B A e e T T T T
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Figure 4. Plot of Vou X L against ¢ in log-log scale for the case Jy/kpT =1 and
H/Jy = 0 showing the collapsing of the curves for the different system sizes L.

For temperatures lower than the one used by us the interface does not move for
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Figure 5. Plot, in log-log scale, of Vo x L1/? against ¢ for the case Jy, /kgT = 1
and H/J, = 2. Collapse of the curves is seen for large times.

H/Jy < 2 because the parameter a; is effectively zero. For H/Jy = 2, however, a,
is always % and the interface moves with an exponent z = 1.5 as our results show.
For H/J, > 2 the magnetic field wins over the coupling constant J, and we reach the
random deposition limit (h; increases every micro-step if it is chosen to move), Note
that in the random deposition limit Vjy, is zero at all times and €*(L,#) = ¢ (h; is a
Poisson process) [20]. The parameter «, for H/J, = 2 is small but not zero and ej is
near 1 but not exactly 1 as it would bhe for zero temperature.

Now we try to show that for field H/Jy = 2 and low temperatures the model
under consideration is physically similar to the restricted 08 model (RS0S) [4], and
therefore the fact that the results of the numerical simulation on the two models agree
is not surprising. In the RSOS model the height h; (when chosen to move) increases
only when the interface steps |k; — h; |, as well as |h; — h;_, |, are both less than or
equal to a given specified number N. Thus the RSOS model maintains interface steps
between specified limits. In our model the situation is similar. When £, is chosen
to move at a given time-step the quantities |h; — h; | and |h; — k| in principle
also change; the sum of two quantities |h; — f, ;| and [h; ~ h,_;| can be taken as
an Indicator of local roughness. ln our special case for all those local configurations
i which the increment of f; leads to the sum remaining the same (or decreasing),
the probability of h; increasing is one. For all other configurations the probability of
the sum of height differences increasing (due to a change in h;) is always half. Thus
we see that probability rules under these special conditions, i.e. H/J, = 2 and low
temperatures damp the increase of local roughness. We simulated the R30S model for
the case N = 1 for the same system sizes and simulation time as used in the simulation
of our Ising meodel; two thousand samples were used for averaging purposes. The plot
of Vo x L%° against  is shown in figure 6, demonstrating that a data collapse is
again obtained in the asymptotic regime, confirming a5y = —0.5 in this model also.
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Figure 6. Plot, in log-log scale, of Vou x Lif? against ! for the RSOS model. Here
also collapse of the curves is obtained for large timnes.
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Figure 7. Plot, in log-log scale, of Vom x L against t for the case Jy /kgT = 0.1
and H/Jy =2,
3.2. High-temperature resulls

The simulation time in this case was not enough to get the asymptotic value of £(L,t)
for the largest system (L = 128) and for all the magnetic fields studied. We enter
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the @ values obtained for each case n table 1. As can be seen, they are all consistent
with o = 0.5 as expected. In figure 2 the curve In&(L, co) against In L is plotted for
Hf J, =2

In order to obtain D, times greater than 10000 MCS/L were used. The results of
the fit of In D against In L to a straight line are also in the table. For H/J, =04
and H/J, = 2 results are consistent with agyy = —1. For the highest magnetic field
simulated, however, we need higher simulation times and better statistics in order to
get reliable measures of D in the asymptotic regime. The plot V5 x L against ¢ for
H/J, = 2 is shown in figure 7. The collapse of the different curves shows again that
gy = —1 describes the results well. For the case H/J, = 4.0 a similar plot also gives
the best superposition of curves for acy = —1.

In order that the effects of magnetic field be easily observable we should have
H > kgT. However, in our case this forces H to be much greater than Jy and we find
ourselves in the random deposition limit with the corresponding values of exponents.
On the other hand, since the parameter A (proportional to the interface growth velocity
and, consequently, to the magnetic field) is a relevant coupling constant for d = 2 in
the equation of Kardar et al [16), the magnetic field, however small, will witimately
change the exponents. The time needed to see this is, unfortunately, very large and
we have not performed simulations to reach this limit.

4. Conclusion

The results for our model suggest that in the low-temperatiire regiime there exists
a cross-over, as the magnetic field increases, between z = 2 and 1.5. For magnetic
fields higher than H/J, = 2 a further set of simulations is needed in order to see if
the z exponent continues to decrease as we approach the random deposition limit. Tt
remains an unanswered question wheiher in the high-temperature case a decrease of
z from 2 could be observed. Further simulations are needed with better statistics and
larger times in order to probe the system under these conditions.

As we have shown, the size dependence of the large-time diffusion coefficient of the
centre of mass can give information about the dynamic exponent z. This is confirmed
by our simulation of the RSOS model. An analysis of this model [14] different from
ours (based on equation (4)) gives z = 1.5 for two dimensions which agrees with ours:
ocy = ~0.5 and z - 200 = —agy. We believe that our method of analysis could
be applied to other growth models in two dimensions as well as to higher dimension
models, where some controversy about the values of the exponents remains [14]. Our
study also indicates that it may be fruitful to develop theoretical work incorporating
the behaviour of the variance of the centre of mass.
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