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approximation _ _  of the ZD anisotropic Isinn - model: field- 
driven case 
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Departamento de Fisica, Universidade de Aveiro. 38W Aveim. Portugal 

Received 12 February 1991. in final form 10 June 1991 

Abstract .  We consider an Ising system in t w o  dimensions with anisotropicferromag- 
netic interactions in the strong anisotropic limit and study, v i s  numerical simulation, 
the dynamics of the interface separating t w o  domains. Since the system is highly 
anisotropic ( J s  > Jv with J,  W k g T )  and we neglect the overhang eonfrguations, 
the model in sonie aspects 1s an SOS (solid on solid) model. in this case the do-n 
wall mows in one direction (x) and w e  are in the so-called 'stripgeometry' (L x m). 
L being the size of the system in the y direction. The dynamics ofthis interface can 
be reduced, as has been already shown. to  the correlated motion of random walkers. 
Our previous study at high temperntune (Ju < ~ B T )  has shown that  for the equilib- 
rium case where the mean position of the centre of mas5 (CM) does not chalge, the 
exponents z and a of the scaling relation describing the dynamics of the width of the 

from c~oss-over arguments. In this paper we extend our study. by including a uniform 
extemal magnetic field, to the non-equilibrium case where C M  mean position of the 
interface moves with time. We coluider both the high- and lowtemperature cases 
( J , / k s T  = 0.1 and I) ,  and obtain the equality z - 2 0  = - a c ~ ;  O ~ C M  being the 
exponent characterizilig the size dependence of the diffusion coefficient of the C M ,  
i.e. D Y L D I C M  in the long-time regime. For equilibrium we get  CM Y -1. For 
the lowtemperature, field-driven case we find the exponent appmadiing the value 
-0.5 as the magnetic field increases from 0 lo  H / J ,  = 2. Since the static exponent 
a obtained is always near 0.5. our results in the low-temperature case correspond to 
I = 2 for eqoilibrium and approach the mloe z = $ predicted by Icardar, Parisi and 
Zhang in the non-equilibrium siruation. The values of the exponent z obtained in dif- 
ferent cases (equilibrium and non-equilibrium) by calculating the CM exponent a c ~  
are the same as those obt.ained from known equalities: I + a  = 2 (nomequilibrium) 
and L - 2 0  = d - 1 (equilibrium). Therefore we propose that the single equality 
z - 20r -aCM may apply far more genually and the study oi CM dynamics may 
therefore provide an altemt,ive (or complementary) way of analysing the results of 
domain growth simulal,ions. We also n01.e that  our results are in  agmement with 
two-dimensional results on the reotricred solid on solid model (RSOS). 

y=!! hz.;c y=!..er 2 ;?d c.5, re$pe&re!y, +.: sT&it!i?y 2 - = 1 ,&= ob?&& 

1. Introduction 

Many studies have been reported of the simulation of dynamics of an interface that  
moves just in one direction. Various models have been considered: the single-step 
model [I, 21, ballistic deposition models [3-61, random deposition with surface diffusioii 
[2, 71, Eden models [E-131, and the rest,ricted SOS model [14], both in two and higher 
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dimensions. For 'strip geometry' ( L  x 001, considered here, the interface is defined by 
the variables hi ( i  = 1 , .  . . , L ) .  The interface widt,l~, <, is given by 

L 

1 /L  c(hi - hCM)' 
i=1 

L with h,, = l / L  
a finite-size scaling relation [3]: 

hi$ the position of the c e ~ t r e  of mass, This quantity, <, obeys 

F(L,t)  = L"f&/L". (2) 

The  interface width saturates for large times (t  >> L ' )  at a size-dependent value, 

t ( L !  m) - L" (3) 

< ( L , t  < L ' )  - t o / & .  (4) 

and is L independent for small times ( t  < La): 

To this behaviour corresponds a scaling iunction t,imt reaches a constant vaiue for 
large 2: and behaves like zalZ for small +. Edwards and Wilkinson [15] derived a 
Langevin equation for the variahles h i ,  and following that Karda,r el a/ [16] analysed 
the general non-equilibrium case and predicted tha t  the inclusion of tlie drift velocity 
for the interface mean position inbroduces a nonlinear term in that equation. In the 
absence of the  nonlinear term, I = 2 and U = 0.5 was obtained for two dimensions. 
vvnen ihe noniinear ierm is added a value of 2 equal io $ is obtained, but ihe vaiue 
of a is the same. Furthermore, tile exponent equality, z + a = 2, emerged from the 
renormalization group t,rea,tment.. This behaviour was found to be consistent with 
simulation results, except for random depositioir with surface diffusion where, despite 
the non-equilibrium character of bhe model, : = 2 was observed [2, 71. 

In our previous simulation study [17] of the 2D anisotopic Ising model for tempera- 
b U l C  cv 'L~u~u"""lg  u v  4 ,aB' - U.1,  w c  ,,a<, l"",l" b l l n b  111 cqu,rrv,'urrL Y L l C  ~-n,,"'LC,,LU 

z and a take the values 2 and 0.5, respectively. We include here the magnetic field 
in our model thereby creating a non-equilibrium situation which makes the interface 
mean position increase with time i n  the z direction. We consider various values of the 
magnetic fieid and temperatures. Henceforth, we express both J ,  and H in energy 
units; thus J y / k , T  and H/k,T are dimensionless. In  tlie next section we define the 

its relation with other quantities. The  details of the siniulation experiment are given 
in the section of results and discussion. Our  conclusions, which include discussion on 
the limitations of our st,udy and possihle future work, are i n  the  last section. 

. " l l ~  ~ ~ 

L ~ .._^^_^_ >:.._A^ I I , .  m - n ,  1.1'. 1 L 1 _ ^ 1 :  : , ! L . ! . . - L L - -  L. 

Y 

-..rl-l - " A  &L" ,..."",:&:n".....,l "..A A:"".."" :.. "--~,l..*-:, ,I." r . L "  --.,e-...", "-A 
lllV"Cl all" LlllC "aLLIv"u q 1 U a r r ~ r u r C z r  "Dr;ll -11111 U IDLUDD 111 DY111C " C b a l l  L11S Vi"> I I I " * C I I I C i l l b  all" 

2. T!:e m d e !  

The  model considered is a two-dimensional anisotropic Ising model where the 
anisotropy is strong, J ,  >> J y ,  and t,lie coupling constant J ,  obeys J ,  >> k,T. The 
initial configuration of the interface separating two domains is a straight line extend- 
ing along the y direction and  positioned at, ,E = 0. This interface moves just i n  the 2' 
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direction and  one can describe it at any t.ime-step by the variables h i .  We use periodic 
boundary conditions such tha t  hi = hitL. Starting from the spin-flip transition rates 
for spins on the  two sides of t,he int,erface we const,ruct bhe probability that in a single 
time-step the  variable hi increases or decreases by one unit, or retains its value [17]. 
These probabilities depend on the local Configuration of the interface, namely on the 
values of hi-' and h,+,.  Only three parameters a l ,  a*, n3 are needed to write these 
transition probabilities for all the nine possible local configurations: 

a1 = { 1 + exp[4J,/kBT( 1 - H / 2 J ,  j]]-' 

az = {l +exp[4JY/kBT(1 + H/2J,)]]-' 

a3 = [1+ exp(-2/f/kBTj]-'. 

In figure 1 we indicat,e, in a concise form, the transition proba,bilities p ,  (hi + hi + l ) ,  
po (hi  -+ h i )  and p -  (hi i hi - 1)  for all possible configurations around hi. In the 
figure, the full black circle represents t,he position o f t h e  walker hi along the x direction 
while circles with - and + signs represent walkers hi- l  and hi+ l ,  respectively. The  
probabilities underneath a configuration are given in the following order: p + ,  p o ,  p... 
At every time-step a variable hi is randomly chosen to move and is changed according 
to these probability rules. 

0 0 0 
0 0 
0 0 

0 0 

0 0 0  

0 0 0 0 

0 
1a3,1 - 01-n1,a21 

0 0 0 
h3,0,1-031 ia,,n3-n,.l-rgi Io,,a3-o,.l-a31 

Figure 1. Various possible local configurations of the walker h. and the associated 
stepping probabililies. The relal,ive positions of walkers h,-, a i d  /,*+I are indicated 
by e and e, respectivcly. and the prolhbilitie arc given s ( p + ,  PO, p - ) .  See the 
tex t  for details. 

Besides the  interface width already defined, we introduce two other quant,ities, the 
variance of the position hi of a single segment of interface, VI, and blie variance of the 
centre of mass VCM, These two quantities are related to t.he int,erface width by [17] 

EZ(L,t) = VI(tj - Vcr,(l). ( 5 )  

The variable hi is seen t,o perforni a random walk where non-t.rivial correlations 
with neighouring walkers and h i t l  arise because of the non-zero exchange coli- 
stant J, along the direction parallel t,o t,he int,erface. Siiice this walk has no memory, 
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i.e. the transition probabilities at any time-step do not depend on the configuration 
at previous times, it is expect,ed that t,lie Ga,ussian limit of the random walk must he 
achieved for large times [lS]. The variances V, and V,, have, therefore, a diffusive 
behaviour for large times and grow linearly with time, with a diffusion coefficient that 
is L dependent. Moreover, the magnet,ic field H causes the CM position to move in 
the increasing I direction. 

Since the interface width aproach a constant value for large times the large-time 
difusion constants of VI and VcM musi be equai. We designate this common diiiusion 
constant as D and write i ts  size dependence as D - L O C M .  At the ot,her end, for small 
times and sufficiently large systems, VI is L independent. Moreover, for this small- 
time regime E 2  and VI are approximately equal, since V,, is small in this regime. So 
we can write a finite-size scaling expression for Vl (L , t ) :  

A L C Ferreira and S I( Meii,dirdta 

V,(L , t )  = t2"'"(t/L"). (6) 

For small times f ( t )  is constant and for large times it should behave as z I - ~ " ~ ~  

in order to  obtain the time-linear behaviour i n  t,he asymptotic regime. The diffusion 
coefficient D, for large times, hehaves, therefore, like l/L'-?" and we obtain 

z - 2a = -aCM. (7) 

In d dimensions, i n  the cases where the CM behaves as a simple random walker, 
the exponent mCM is equal to - ( d  - 1 )  and equation (7) reduces to 

2 - 2a = d -  1 (8 )  

predicting for two dimensions ( d  = 2) a = 0.5 and z = 2, characteristic of equilibrium 
situations. The last exponent. relat.ion was also found to be relevant for a random de- 
position model in which particles diffuse t o  nearby sites where the binding is strongest 
[19]. In the next section we descrihe the results of our simulation for the exponents 
aCM and a. 

3. Results and discussion 

Our Monte Carlo simulations were done for system sizes L = 8, 16, 32, 64, and 128 and 
times up to 25000 MCSIL (MCSIL Monte Carlo steps per walker). For each system 
size 500 runs were made. Simulations were done for two teniperatures corresponding 
to (a) J,/k,T = 1, and (b) J,/k,T = 0.1. In the low-temperature case, case (a), 
the external magnetic field values chosen were H / J ,  = 0, 0.4 and 2 and in case (h) 

fitting In((L,co) against InL to a straight line. We obtain the diffusion coefficient, 
D, by fitting a straight line to  the curves V,, against 1 in the long-time regime. A 
subsquent straight-line fit of InD aga,inst In  L yields the exponent aCM. The errors 
quoted (table 1) in the  exponent,^ correspond to fitt,ing probabilities equal to  or larger 
than 0.9. We discuss low- and high-temperature results separately. 

$he y*!.es were g.4, 2 Ifid 4. T!:e expofie!!? (1 !??8 obtzined using eq*a.tion (3) by 
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Table 1. Results of the strai&t-line fil,s of In ( ( L ,  00) against In L and In D against 
InL, giving a and n c ~ .  respectiwly. 

0 1 0.54f0.04 -l.OfO.l 
0.4 1 0.50 f 0.03 -0.71 f 0.07 
2 1 0.50 f 0.01 -0.49 f 0.05 
0.4 O . i  ".a, I "."J -".Ja I "."( 
2 0.1 0.55 f 0.04 -0.98 f 0.07 
4 0.1 0.50f0.05 - 

- ~. , --- I 

In L 

Figure 2. Plot of In((L,m) agaiml InL and the corresponding straight-line fits for 
3,JkeT = 1 and H f J v  = 0 . 2  a i d  for J,ll;sT = 0.1 and H J J ,  = 2. 

3.1.  Low-temperature resulfs 

For all magtietic fields the a values obtained are shown in table 1. For the case H = 0 
data for L = 8 were not, included i n  t.he fit , .  The exponent values ollt,ained are close to 
0.5 as expected. For H I J ,  = 0 and 2 me show < against, L i n  a log-log plot in figure 
2. 

The  fits of V,, against t for H J J ,  = 0,0.4 include da ta  only for times greater than 
1000 MCSIL. For this time int.erval all the syst,ems reached the asymptotic regime, as 
seen from the C ( L , t )  behaviour. For H I J ,  = 2, t,imes greater than 5000 M C S J L  are 
needed. T h e  results of the straight.-line fit. of InD against. In L a,re in table 1 ,  and the 

aCM near -1 and therefore z = 2.  a behaviour expect.ed for equilibrium. For higher 
magnetic fields this exponent. approaches aChl = -0.5, corresponding to z = 1.5. 
A further insight into this da ta  analysis call be obt,ained by plotting V C ,  x L-OCM 

against t for all system sizes. I n  figures 4 and 5 we plot these curves for the extreme 
cases H J J ,  = 0 a,nd 2. In the first case a good collapse of data can be seen at all 

" ̂ __^^ "̂"J:.." A"," "_^ ..I-&,"A :.. R,. .,.. 7 ,,> ,I,,, .,',*n-fiAA ?I.L1,, ll,n "*I >" L",,CapY,,",,,& " a b -  a,= p Y u Y c u  11, " 6 " L C  Y.  U,,L ,,L."-..h." --- Y.. I.%Y"..C..Y 
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I 
2 3 4 

In L 

Figure 3. Plot of InD against InL lor the cases J y / l ; B T  = 1 and H I J ,  = 0,0.4 
and 2. 

times; for H / J y  = 2 collapse is o h i n e d  i n  t.he asymptotic regime. For smaller times 
V,, scales actually like 1/L. 

103 

102 

, , , , , ,  iio2 ,,,,; , , , , ,  ~ o ' , -  
lo-' 

10-2 

t 

Figure 4. Plot of VCM x L againsl t i n  log-log scale lor the  case J y / k s T  = 1 and 
H / J ,  = 0 sliowing the collapsing ol the ~ i i w e s  lor the different system sizes L. 

For temperatures lower than the one used by us the interface does not move for 
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f 

Figure 5 .  Plot. in log-log scale, 01 L:chl x L1Iz  agairrzt t lor the case J , /kBT = 1 
and H/Jg = 2. Collapse of the CIIIVCS is seen for large times. 

H I J y  < 2 because the paraiiiet,er a, is effectively zero. For H I J ,  = 2 ,  however, a, 
is always 4 and the int,erfa,ce moves with an exponcnt, i = 1.5 as our results show. 
For H I J ,  % 2 the magnetic field wins over the coupling constant J, and we reach the 
random deposition limit (h i  increases every micro-step if it, is chosen to move). Note 
that in the random deposition limit V,,, is zero a t  a l l  t,imes and < ? ( L , t )  = t (h i  is a 
Poisson process) [20]. The  paraniel,er a2 for H I J ,  = 2 is small but, not zero and a3 is 
near 1 bu t  not exactly 1 as it would he for zero teniperature. 

Now we try to show that for field H / J y  = 2 and low teinperat,ures the model 
under consideration is physically similar t,o the restricted SOS model (RSOS) [4], and 
therefore the  fact tha t  tlie results of the nnmerical siinulatioii on the two models agree 
is not surprising. In the RSOS model t,lie height h,; (when chosen to move) illcreases 
only when the interface steps )h i  - h i t l I ,  as well as )hi - h i - l l ,  are both less thaii or 
equal to a given specified number N .  Thus tlie. RSOS model maintains int,erface steps 
between specified limits. In our model the situation is similar. When hi is chosen 
to move at a given time-st,ep t,lie quant,it.ies Ihi - h,itl l  and Ihi - hi+] l  i n  priiiciple 
also chauge; the sum of t,wo quant,ities Ih; - h i t , )  and [ h i  - h-] I  call be taken as 
an indicator of local roughness. 111 our special case for all  those local configuratioiis 
i n  which the increment. of / t i  leads t,o the s u m  remainiiig the same (or decreasing), 
the probability of hi increasing is one. For all ot,lier configurat.ions the probability of 
the sum of height differences increasiiig (due  t,o a change in h i )  is always half. Thus 
we see tha t  probability rules under these special condit,ions, i.e. H J J ,  = 2 and low 
temperatures damp t,he increase of local rougl~ness. We simulated the RSOS model for 
the case N = 1 for the same system sizes and  simulat,ion time as used in the siniulation 
of our Ising model; two thousand samples were used for averaging purposes. The plot 
of V,, x against t is SIIOWII i n  figure G ,  demonst~rat.ing t,liat a da ta  collapse is 
again obtained in the asymptotic regime, confirming mCh, = -0.5 in this model also. 
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< 10 
Y 

1 :  

lo-' 

!7 
' 8  

i.0: 16 
I 32 

0 64 

11 
.I 0 .  
"l  . .". 

1 -- . 
1 .  :*. 

;:> 
I .+$* * 128 - ..m. 

- 0 .  

- : :. 

t 
Figure 6 .  Plot, in log-log scale, of VCM x L'I2 agninsl t for the RSOS model. Here 
also collapse of 1he ,:"I."eS is ubtinilled for large 1irnes. 

10-2 , ,, , , , , , ,  , ,,,,,,,. , , . , . . , . .  , ,,,,,,,, , , . 
1 10 102 1 o3 1oL 105 

+ 32 

0 64 
I * 128 

I 

5 

Figure 7 .  Plol. i n  log-log scale. of VCM x L agaimt 1 for the case J y / k s T  
arid H / J g  = 2.  

0.1 

3.2.  High-temperature Irsalts 

The simulatioii time in this case was not eiiougli l,o get the  asymptotic value o f € ( L , t )  
for the largest system ( L  = 12R) and for all the magnetic fields studied. We enter 
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the n values obtained for each case i n  table 1. As  can be seen, they are all consistent 
with n = 0.5 as expected. In figure 2 tlie curve In f ( L ,  CO) against In L is plotted for 
H / J y  = 2. 

In order to obtain D ,  times greater than 10000 M c S / L  were used. The results of 
the fit of In D against In L to a straight line are also in the table. For H/Jy = 0.4 
and H / J y  = 2 results are consistent with aCM = -1. For the highest magnetic field 
simulated, however, we need higher simulation times and better statistics i n  order to 
get reliable measures of D in the asympt,otic regime. The  plot V,, x L against t for 
H / J y  = 2 is shown in figure 7. The  collapse of the different curves shows again that  
aCM = -1 describes the results well. For the ca3e H / J ,  = 4.0 a similar plot also gives 
the best superposition of curves for oCM = -1. 

In order that  the effects of magnetic field be easily observable we should have 
H > k,T. However, in our case this forces H to be much greater than J,, and we find 
ourselves in the random deposition limit wit,]? the corresponding values of exponents. 
On the other hand, since the parameter X (proportional to the interface growth velocity 
and, consequently, to the magnetic field) is a relevant coupling const,ant for d = 2 in 
the equation of Kardar et al [lG], the inagnet.ic field, however small, will ultimately 
change the exponents. T h e  tinie needed to see this is, unfortunately, very large and 
we have not performed simulations t o  reach this limit. 

4. Conclusion 

The  results for our model suggest, lliat, i n  tlie low-temperature regime there exists 
a cross-over, as the magnetic field increases, between : = 2 and 1.5. For magnetic 
fields higher than H/Jy = 2 a further set of simulations is needed in order t o  see if 
the z exponent continues to decrease as we approach tlie random deposition limit. It 
remains an unanswered question whet.lier i n  tlie liigli-t,empera,t,iire case a decrease of 
: from 2 could be observed. Further simulations are needed wit,li het,t,er statistics and 
larger times in order t o  probe tlie syst,eiii under tlirse conditioiis. 

As we have shown, the size dependence of t,he la.rge-time diffiision coefficient of the 
centre of mass can give informat~ion ahout, tlie dyiianiic expoiient z .  This is coiifirnied 
by our siinulation of the RSOS model. AI] analysis of this model 1141 different from 
ours (based on equation (4)) gives z = 1.5 for t.wo dimensions which agrees with ours: 
aCM = -0.5 and z - 2a = -aCh,. We believe that our method of analysis could 
be applied t o  other growth models i n  t,wo din~ensions as well as t o  higher dimension 
models, where some controversy about. the values of the exponents remains [14]. Our 
study also indicates that  it may be fruit.fi11 t o  develop theoretical work incorporating 
the behaviour of the variance of the cent,re of nmss. 
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